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Abstract

The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g.

suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow)

and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure

associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model

and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships

highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict

fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical

models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two

methods.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Constraining unexposed or poorly resolved subsurface

fault geometry from observed fold shape has far-reaching

importance, from assessment of seismic hazard to evalu-

ation of hydrocarbon potential. Fault-bend folds have long

been recognized as forming due to slip along subjacent

faults with flat-ramp-flat geometry in areas of thin-skinned

deformation (e.g. Rich, 1934; Mitra and Sussman, 1997)

and past studies have shown that fault geometry has a

systematic influence on aspects of fold shape such as axial

trace orientation (Rowan and Linares, 2000), fold tightness

(Allmendinger and Shaw, 2000) and fold terminations

(Wilkerson et al., 2002). Within extensional environments

fault depth and dip may be determined from the associated

roll-over anticline, as long as the hanging wall stratigraphy

is accurately determined (Williams and Vann, 1987; Kerr

and White, 1992, 1994).

Both kinematic and mechanical models have been used

to analyze fault-cored folds. Kinematic models, which

balance the geometry of the deforming system without

incorporating force or rheology, have been used extensively

to study fault-bend folding (e.g. Suppe, 1983; Wilkerson

et al., 1991; Salvini and Storti, 2001). Mechanical models

utilize continuum mechanics to simulate deformation and

have been used in the past to examine folding associated

with fault ramp tips (e.g. Cooke and Pollard, 1997; Johnson

and Johnson, 2001) and flat-ramp-flat geometry (e.g. Berger

and Johnson, 1980; Kilsdonk and Fletcher, 1989; Strayer and

Hudleston, 1997). A recent comparison of mechanical and

kinematic trishear models of fault-tip folds (Johnson

and Johnson, 2001) demonstrates the insights gained from

comparative studies and exposes the dearth of such studies

for fault-bend-folding. Within this study, two numerical

models, one kinematic (fault parallel flow) and one

mechanical (boundary element method), show how folds

respond to changes in flat-ramp-flat fault geometry using

these different methods. We perform a sensitivity analysis to

ascertain which fault parameters are most influential over

fold shape in each method. When kinematic and mechanical

models with identical fault configurations produce similar

0191-8141/03/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0191-8141(03)00080-4

Journal of Structural Geology 25 (2003) 2023–2034

www.elsevier.com/locate/jsg

* Corresponding author. Present address, Department of Geosciences,

The Pennsylvania State University, University Park, PA 16802, USA. Tel.:

þ1-413-545-2286; fax: þ1-413-545-1200.

E-mail address: hsavage@geosc.psu.edu (H.M. Savage).

http://www.elsevier.com/locate/jsg


changes to a feature of the fold shape, the usefulness of that

fold feature for inferring fault geometry is suggested. When

the methods disagree, an attempt is made to determine if one

set of generated fold shapes is more reasonable through

comparison with field or laboratory models. Similar

sensitivity analyses have focused on the effects of fault

geometry (dip, ramp height, flat length, displacement) on

fold shape in kinematic models (Rowan and Linares, 2000)

and in mechanical models, along with the role of anisotropy,

for fault propagation folds (Johnson and Johnson, 2001).

Finally, we perform kinematic and mechanical simu-

lations of a laboratory fold with well-constrained fault

geometry (Chester et al., 1991) in order to assess how

accurately the models can predict a known fault geometry

by matching the fold shape. The laboratory fold is simulated

by iteratively altering fault geometry. The kinematic and

mechanical best-fitting fault geometries are compared with

the laboratory fault. Positive correlation of both fold and

fault shapes supports use of the method for predicting

subsurface fault geometry.

2. Modeling methods

2.1. Mechanical modeling

Mechanical modeling is based upon the three principles

of continuum mechanics (e.g. Fung, 1969; Means, 1976;

Timoshenko and Goodier, 1934). The first involves

constitutive relationships, which relate the applied stress

to the resulting strain in the rock (e.g. Means, 1976). The

second principle of continuum mechanics states that the

rock body must be in equilibrium; the body deforms but

cannot translate or rotate (e.g. Means, 1976). The third

principle, compatibility, requires that the displacement in

each direction be continuous and single-valued to prevent

gaps and overlaps from occurring (e.g. Means, 1976).

For this analysis we use POLY3D, a three-dimensional

boundary element method (BEM) tool well suited for

modeling faults (e.g. Crider and Pollard, 1998). BEMs

discretize fault surfaces into a mesh of polygonal planar

elements (Comninou and Dundurs, 1975; Thomas, 1994).

POLY3D has been used to model normal fault interaction

(Willemse et al., 1996; Crider and Pollard, 1998; Maerten

et al., 1999), as well as to assess the effect of segmentation

on normal fault slip (Kattenhorn and Pollard, 2001). The

user designates either slip/opening or traction on each

element as well as a remote stress or strain. POLY3D

assumes that the rock surrounding a fault is homogenous,

isotropic and linear-elastic. Within our model, the rock body

deforms in response to slip along faults in a half-space

representing the upper Earth’s crust (Fig. 1). Due to linear-

elastic rheology, POLY3D evaluates stress most accurately

under infinitesimal strain conditions (strain ,1%). How-

ever, the compatibility rules assure that displacements are

single-valued even to large strains as long as the problem is

set up as a displacement boundary value problem (Maerten,

1999; Maerten et al., 2000, 2001). In a displacement

boundary value problem, the slip and opening are prescribed

along fault elements rather than calculated from prescribed

fault tractions and remote stress or strain. Furthermore,

displacement boundary value problems require prescription

of remote strains rather than stresses. To model large

amplitude folds (i.e. .1% strain) including simulation of

laboratory folds, this study implements a displacement

boundary value problem.

2.2. Kinematic modeling

Kinematic models use geometric constraints to analyze

the progression of rock deformation. Such models are

particularly beneficial for the geometric interpretation of

faulted and folded terrains (e.g. Suppe, 1983; Williams and

Vann, 1987; Geiser et al., 1988; Kerr and White, 1992). A

variety of geometric rules can be applied to constrain the

kinematics fault-cored folds including conservation of

volume (e.g. Dahlstrom, 1990), fault parallel flow (Sander-

son, 1982; Keetley and Hill, 2000), bed-parallel shear (e.g.

Suppe, 1983) and inclined shear (Withjack and Peterson,

1993). Although flexural-slip based kinematic models are

widely used to interpret deformation of sedimentary strata in

contractional regimes (e.g. Suppe, 1983; Geiser et al..

1988), these algorithms are problematic for inferring fault

geometry from fold shape without a priori knowledge of

either fault shape or the axial surfaces of the fold. For this

reason, the 3DMOVE kinematic analysis software (Midland

Valley Ltd) implements fault-parallel flow (Kane et al.,

2003) for reverse modeling and restorations of contractional

folds. As suggested by the name, all points in the hanging

wall displace parallel to the fault surface (Fig. 2). Bed area is

conserved and, unless additional back-shear is applied to the

hanging wall, beds thin along the forelimb of the fold. The

computational robustness of the fault-parallel flow

algorithm allows implementation of any fault shape in

three-dimensions whereas bed-parallel slip algorithms are

currently limited to two-dimensions. For our study, the

Fig. 1. Schematic diagram of POLY3D model. For this study, we set up a

displacement boundary value problem by prescribing a remote strain of

zero and slip amount to each element along the fault. The elastic half-space

simulates the Earth’s free surface.
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hanging wall moves up dip; however, the direction of

transport can be oblique to fault dip (Fig. 2). As with

mechanical methods, uniform or varied slip can be

prescribed to fault surfaces. Unlike the mechanical methods,

fault parallel flow and many other kinematic methods limit

deformation to the hanging wall; the footwall remains fixed

and undeformed.

3. Comparison of kinematic and mechanical methods

The analyses in this study outline the differences and

similarities between mechanical and kinematic models of

fault-bend folding. Fault parameters, including fault dip,

depth, ramp length and amount of slip are systematically

varied to assess their influence on anticline tightness,

amplitude, length and width (Fig. 3). The three-dimensional

fault surface consists of one rectangular ramp and lower and

upper horizontal flat segments (Fig. 3). Within the fault

parallel flow model, flats are considered to extend semi-

infinitely. Within the BEM models, the flats extend 15 km

so that their distal tips do not influence folding over the

ramp (1 , ramp length , 10 km). Although flat depth is

adjusted with variations in ramp length and depth, all other

parameters of fault flats are constant. The flats and ramp

extend 10 km in the strike directions in all models. Uniform

reverse fault slip is prescribed directly to all fault segments.

The ramp dips are varied to investigate a range of plausible

fault geometries, which include those that may not have

formed in contraction (dip . 358).

The fault parallel flow and boundary element methods

produce dramatically different shaped three-dimensional

folds (Fig. 4). The kinematic anticline is boxy with a more

steeply dipping backlimb than forelimb. The mechanical

anticline is more domal than the kinematic fold and has an

adjacent syncline. Deformation is more distributed in the

mechanical fold as well, causing fold length to greatly

exceed the length of the fault. For fault parallel flow models,

fold length almost exactly corresponds to fault length.

For both fault parallel flow and BEM models the fold

profiles along a dip-direction cross-section change with

variation in fault geometry (Fig. 5). The model results are

also graphed to detect trends in the fault-fold relations and

highlight the differences between the kinematic and

mechanical methods (Fig. A1). Understanding the relations

between fault and fold parameters will facilitate inference of

fault geometry from fold shape. For example, this will

reduce the trial and error involved in estimating fault

geometry from laboratory fold shape later in this paper.

3.1. Fold parameters

3.1.1. Fold tightness

The geometric nature of the kinematic method gives rise

to a fold with a horizontal roof, with two sharp fold hinges

where the roof and limbs meet (Fig. 4). Consequently, these

folds have two interlimb angles to contribute to fold

tightness (or openness), whereas the mechanical fold has a

more rounded top and a single fold hinge. To facilitate

comparison, fold tightness is here expressed in terms of

difference between limb dips rather than interlimb angle.

All of the kinematic folds have more steeply dipping

forelimbs and backlimbs than the mechanical folds;

consequently, the kinematic folds generally have greater

tightness (Fig. 5). Kinematic fold tightness positively

correlates with fault dip (Fig. 5d); steeper ramps produce

tighter folds.

The mechanical fold tightness is affected by all of the

fault ramp parameters. Increase in ramp length slightly

tightens folds (Figs. 5e and A1b). However, once the ramp

length exceeds 5 km, further increases in ramp length have

little effect on fold tightness (Fig. 5e). Similarly, increasing

depth of the fault broadens the fold until the fault reaches 2–

3 km depth, when the rate of change drops considerably

(Fig. 5g). Mechanical fold tightness is most sensitive to fault

depth, followed by fault slip. In this analysis of fold

tightness, two differences between the BEM and fault

parallel flow models emerge; while mechanical folds

become tighter with increased fault slip and shallower

fault depth, the kinematic fold tightness remains unchanged.

Because tighter folds associated with increased slip are

observed in laboratory experiments (Chester et al., 1991),

we consider the mechanical method to more reliably

incorporate this relationship than the kinematic method.

Increasing fault dip tightens folds in both fault parallel

flow and BEM models (Fig. 5c and d) as well as other

kinematic models (Rowan and Linares, 2000). However, the

Fig. 2. Schematic diagram of the fault-parallel flow algorithm without

added layer-parallel shear strain (Kane et al., 2003). (a) Each point within

the hanging wall displaces along the generate flow lines (dashed) that

parallel the fault surface within each dip domain. Dip domains are bounded

by the bisectors to the fault kinks. (b) Without the application of additional

layer-parallel shear, movement of the hanging wall is uniform within each

dip domain resulting in a lengthened and thinned forelimb. This algorithm

constrains the backlimb to parallel the ramp and fold amplitude equals

throw on the fault. Because the same geometric rules apply to all beds, the

fold shape is similar at all depths.
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forelimb and backlimb dips of the kinematic fold are

constrained by ramp dip (Fig. 2; Kane et al., 2003), whereas

the dips of both limbs change in the BEM model with slip

amount and depth. The insensitivity of kinematic fold

tightness to fault depth contradicts field observations of

fault-bend folds where layers become more open away from

the fault ramp (Rowan and Linares, 2000). Such tightening

of folds near ramp tips has been frequently observed in fault-

tip folds (e.g. Davis, 1978; Chester et al., 1988). However,

using fold tightness to infer fault parameters based on the

BEM model results are problematic and non-unique because

all of the fault parameters have significant effects on fold

tightness.

3.1.2. Fold amplitude

Fold amplitude is measured vertically between the crest

of the fold and the surface far away from the fold. Fault slip

magnitude has the greatest effect on fold amplitude in both

fault parallel flow and BEM models; slip is directly

proportional to amplitude (Figs. 5a and b and A1e). In the

kinematic fold, this relationship results from the increased

throw associated with increased slip vector. For instance,

2 km of slip along a 458 dipping fault produces 1.4 km of

throw whereas 1 km of slip produces half as much throw.

Consequently, steeper ramps also produce greater amplitude

folds because they have greater throw, the upward

component of slip (Fig. 5d). For the fault parallel flow

Fig. 3. Fault parameters (in dark gray) are varied to assess their effects on fold parameters (in light gray). Fold length (in and out of the page) is measured as

well.

Fig. 4. Map view of (a) mechanical (BEM) and (b) kinematic (fault parallel flow) fold contours resulting from 1 km of slip along a 10 km ramp buried 2 km.

The dashed contours of the mechanical fold signify an amplitude of less than zero corresponding to syncline development. Dotted line indicates transect used

for fold profile analysis (Fig. 5).
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models these parameters are directly related by geometry;

fold amplitude is equal to the sine of the fault dip multiplied

by the prescribed slip. Because the sine function varies

between zero and one, while the amount of slip can exceed

one, variation in fault slip more strongly affects amplitude

than fault dip (Fig. 5b and d). An increase in fold amplitude

with increased slip also occurs in laboratory models of

folding (Morse, 1977; Chester et al., 1991).

The mechanical fold amplitude is influenced by all fault

parameters, although most significantly by slip amount.

Mechanical fold amplitude is positively correlated with

fault slip, dip and length while deeper fault ramps produces

slightly smaller fold amplitudes (Fig. 5a, c, e and g).

Whereas deeper ramps produce smaller surface folds, longer

and steeper fault ramps produce greater amplitude folds.

Although amplitude is positively correlated with slip for

both models, the kinematic fold amplitude is more sensitive

to slip amount than the mechanical fold. Because BEM

models experience displacement along both sides of the

fault, i.e. the hanging wall displaces up-dip as the footwall

displaces down-dip, the hanging wall experiences approxi-

mately one half the slip movement in contrast to the fault

parallel flow models, which only have displacement on the

hanging wall side of the fault ramp. Therefore, the hanging

wall of the BEM model experiences half the deformation of

the kinematic hanging wall for the same amount of slip. The

remaining deformation is accommodated within the foot-

wall of the mechanical models.

Fig. 5. Change in fold profiles for mechanical (left column) and kinematic (right column) folds. While one fault parameter is varied, all other parameters are

held constant. When slip is changing (row 1), the depth is held at 5 km, the ramp length at 5 km, the fault dip at 608. While varying the dip of the fault (row 2),

slip is held constant at 1 km, the ramp length at 5 km and the depth at 1 km. During variation in ramp length (row 3), the slip is held at 1 km, the dip at 608 and

the depth at 1 km. Finally, while depth of the fault is varied (row 4), the slip is held at 1 km, the ramp length at 5 km and the dip at 608.
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The kinematic method may overestimate fold ampli-

tude because amplitude depends only on the slip and dip

of the fault and is independent of fault depth for these

models. As mentioned earlier, we expect layers further

away from a fault tip to have less deformation but the

fault parallel flow models predict no such decrease.

Therefore when using fold amplitude to infer fault slip,

the kinematic result cannot be used unless the ramp

depth is known.

The fold shape also responds to changes in fault dip

(Fig. 5c and d; Rowan and Linares, 2000). Folds overlying

steeper faults have greater amplitude in both fault parallel

flow and BEM models due to the greater component of

vertical displacement along these faults. However, for fault

dip greater than 608, the mechanical fold amplitude

decreases (Fig. 5c). Because the BEM models incorporate

displacement along both sides of the fault, downward

displacement of the footwall creates a small syncline ahead

of the forelimb (Fig. 5a, c, e and g). When the depth of the

syncline is added to the height of the anticline, this

aggregate fold amplitude has a similar correlation with

fault ramp dip as the kinematic fold (see Fig. A1). This

approach was not used as the standard to measure fold

amplitude because the fault parallel flow models do not

produce a syncline and the direct comparison would be

compromised. While ramp dip affects fold amplitude, the

fold tightness and width are more accurate constraints on

this fault parameter.

Ramp length increases fold amplitude very slightly for

both sets of models (Fig. 5g and h). The increase in fold

amplitude becomes less discernible with increasing ramp

length. This indicates that miscalculating an 8-km ramp as a

Fig. 5 (continued )
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10-km ramp will not affect the results as much as

miscalculating a 1-km ramp as a 3-km ramp.

3.1.3. Fold length

Slightly different methods of fold length measurement

are used for fault parallel flow and BEM models because of

the difference in fold termination style. Mechanical folds do

not terminate as abruptly as kinematic folds (Fig. 4). For the

fault parallel flow models, the fold length extends to the

locations where fold amplitude along the fold height

abruptly drops to zero. The mechanical fold terminations

are estimated where the amplitude along the fold axis drops

to 1% of the maximum amplitude, because the surface is not

exactly zero after folding. One of the most significant

distinctions between the models is the influence of fault

length on suprajacent folding. The kinematic fold length

depends solely on the length of the fault at a nearly one-to-

one ratio; no other fault parameter affects fold length.

Because the fault parallel flow method is created by linking

two-dimensional cross-sections, material only moves within

the user-prescribed transport plane. Consequently, the fold

takes on a boxy shape, with the nose of the fold falling off

abruptly above the lateral end of the fault (Fig. 4b). In

contrast, the mechanical fold length ranges from two to five

times the length of the fault. The mechanical fold lengths

correlate positively with fault dip, depth and slightly with

ramp length because in continuum mechanics, deformation

at one point influences the surrounding material. To

distinguish between the kinematic and mechanical predic-

tions for fault length, high quality three-dimensional seismic

or laboratory data would be needed to ascertain how far

natural folds extend beyond fault terminations; the authors

are unaware of such published data. However, when the

length of the fault is not a major consideration, such as

studies of cylindrical folds, this inherent difference in the

models may not be important.

3.1.4. Fold width

Fold width is measured in the same manner as fold

length, where the fold amplitude drops to zero or 1% of the

maximum fold amplitude for the fault parallel flow and

BEM models, respectively. An increase in the fault ramp

length creates wider folds for both models of this (Fig. 5g

and h) and other studies (Rowan and Linares, 2000). Fold

width is most sensitive to ramp length and this is the only

significant effect that ramp length has on kinematic fold

geometry (Fig. 5). Fold width increases with increasing

ramp length similarly for both models, except the BEM

models are consistently 7 km wider, due to the more

distributed nature of deformation in these models. Whereas

deformation in the fault parallel flow models is limited to

the hanging wall above and ahead of the ramp, in the BEM

models, material below and behind the ramp also deforms.

The laboratory study by Chester et al. (1991) shows that

folds are wider than the length of the ramp, indicating that

the mechanical folds are more consistent with laboratory

folding.

Although fold width is most sensitive to ramp length in

both sets of models, other parameters also affect fold width.

While kinematic fold width is insensitive to fault dip,

mechanical folds become narrower with increasing fault dip

(Fig. 5c and d). Additionally, fold width is positively

correlated with fault slip; however, kinematic fold width

increases more dramatically with slip than mechanical folds

(Fig. 5a and b). Laboratory fault-bend fold models that test

different ramp dips are not prevalent in the literature.

However, laboratory models that vary fault slip show that

fold width increases with increased in fault slip (Chester

et al., 1991).

3.2. Significant difference between kinematic and

mechanical methods

The over-arching difference between the kinematic and

mechanical methods is not a difference in resultant fold

shapes but rather a difference in the way each method

simulates deformation. In the kinematic method, each fold

parameter is sensitive to only one or two fault ramp

parameters (Table 1). In contrast, the BEM model results are

more nuanced; fold aspects are sensitive to several fault

ramp parameters. This leads to ambiguity and non-

uniqueness when inferring fault geometry from fold shape

using the mechanical results. An example of this is shown in

Fig. 6 where similar fold shapes are formed from faults with

different dips, depths, and horizontal placement of the ramp

tip. Therefore, when using fold shape to infer fault shape,

the kinematic method should be used to produce a non-

unique first approximation, but will be unreliable for final

results due to lack of out-of-transport plane movement and

uniform fold shape with fault depth.

4. Comparison to laboratory fault-bend fold models

By simulating a laboratory experiment with well-

constrained fold and fault shapes we can test how closely

the kinematic and mechanical models predict the fault

Table 1

Sensitivity of fold aspects to fault ramp parameters. K—kinematic: fault

slip affects fold amplitude and width, ramp dip affects fold tightness, ramp

length affects fold width, and ramp length affects fold length. M—

mechanical: all fold parameters are affected by at least two fault ramp

parameters

Slip Ramp length Dip Depth

Fold amplitude M, K M M

Fold length M M M

Fold width M, K M, K M

Fold tightness M M M, K M
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geometry from the fold shape. Because of the lack of out-of-

transport plane movement in the kinematic method, we

chose a non-plunging fold experiment, where stretching in

the third dimension is not a factor.

Chester et al. (1991) produced fault-bend folds by

compressing rock layers situated over a fault in a triaxial

compressor (Fig. 7a). The folded layers were limestone

interbedded with either mica or lead to promote interlayer

slip. During interlayer slip, weak contacts in a stack of

layered rock act as fault surfaces as the rock is folded,

allowing greater bending than a homogenous body of the

same thickness and creating a higher, tighter fold (Pollard

and Johnson, 1973). Experimental interlayer slip along mica

or lead layers simulates geologic slip along layers with low

shear strength such as shale. A forcing block of sandstone

with a pre-existing, lubricated fault surface was used to fold

the limestone and mica layers. A rigid block of either granite

or sandstone composed the footwall of the fault to simulate

thin-skinned deformation. The fault ramp is approximately

0.57 cm deep, dipping 208, 1.53 cm long and, in the

particular experiment simulated here (Chester et al., 1991;

Fig. 7a), the fault has approximately 0.71 cm of slip. The

resultant fold is 0.32 cm in amplitude, 3.9 cm wide, with a

forelimb angle of about 178 and a 178 dipping backlimb

(Fig. 7a).

A series of fault parallel flow and BEM models were

iteratively altered until the model fold shapes approximated

the laboratory fold shape (Fig. 7a). The fault geometry of

the laboratory experiment served as the initial model

configuration in this iterative process. Once a match is

made to the fold shape, the model faults are compared with

the laboratory fault geometry to determine which method

could more accurately determine fault geometry from fold

shape. Although the mechanical models could yield

multiple fault configurations that produce fold shapes

matching the laboratory fold, we limit the chance of

spurious matches by using the laboratory geometry as the

initial model configuration. In the absence of data to

constrain a hypothetical initial geometry, the iterative

matching of fold shape can become time consuming and,

Fig. 6. Two faults with different depths and dips produce remarkably

similar fold shapes using the mechanical method. The black fault dips 608

and is 2 km below the surface while the gray fault dips 208 and is 1 km

below the surface.

Fig. 7. (a) Laboratory fault-bend fold (Chester et al., 1991). (b) Fold profiles produced by laboratory fold (black), kinematic fold (gray) and mechanical fold

(dashed black). The fault parallel flow model more closely approximates the fold shape than the BEM.

H.M. Savage, M.L. Cooke / Journal of Structural Geology 25 (2003) 2023–20342030



when using mechanical methods, can yield inaccurate fault

configurations.

Slip along the laboratory fold exceeds 50% of the ramp

length. Simulating such high ratios of slip to ramp length

can be problematic for mechanical models that assume

linear elasticity. To avoid this the mechanical models that

simulate Chester’s laboratory folding, are incremented so

that the slip in any one step is much less than ramp length.

When simulating the laboratory fold, fault depth is the

most difficult of the fault parameters to infer. The kinematic

method is insensitive to fault depth, as fault depth only alters

lateral position of the suprajacent fold (Fig. 5h), and the

mechanical method calculates flexure of a homogenous

block which predicts shallower faults than an equivalent

method incorporating interlayer slip. However, interlayer

slip can be simulated within the BEM models by

determining the effective thickness of a homogenous

block with the same resistance to bending as a freely-

slipping layered sequence; this effective thickness is usually

much smaller than the total thickness of the layered rock

(Pollard and Johnson, 1973). For this laboratory experiment,

the effective thickness of the layers is equivalent to the

effective depth of the fault (Fig. 7a). The effective depth of

the laboratory fault is calculated with the equation:

De ¼ ðDt2Þ1=3 ð1Þ

where De is effective fault depth, D is the actual fault depth

and t is thickness of individual layers (Pollard and Johnson,

1973). This equation is only valid for free-slipping layers

with approximately uniform elastic constants and thickness,

such as those in the experiment of Chester et al. (1991). For

this laboratory model, the effective depth of the upper ramp

tip is 0.23 cm. We modeled a fault at this depth and

iteratively altered other parameters until we arrived at the

best-fitting fold shape. Interlayer slip can be incorporated

within the BEM model by considering the effective depth of

the fault but cannot be considered in the fault parallel flow

model due to the insensitivity of this method’s fold shape to

fault depth.

From this analysis, the two methods predict surprisingly

similar fault geometry from fold width and amplitude and

the discrepancy between the predicted and laboratory fault

geometries is similar for kinematic and mechanical models.

The kinematic model infers the fault ramp approximately

0.5 cm ahead of the laboratory upper ramp tip, but

kinematic fault depth also influences inference of fault

position. With increasing kinematic fault depth, the

suprajacent fold position shifts to the right, which

subsequently shifts the inferred fault position (Fig. 5h). In

this simulation, we constrained fault depth from the

laboratory experiment. This suggests that either fault

depth or lateral position will need to be constrained to

infer geologic faults.

Assessment of the overall shapes of the folds (Fig. 7)

reveals that the kinematic fold approximates the Chester

et al. (1991) fold slightly more accurately than the

mechanical fold. The kinematic and laboratory folds are

nearly symmetric while the forelimb of the mechanical fold

is slightly steeper than the backlimb.

Both methods simulate the laboratory fold shape well

and predict reasonable fault parameters. The kinematic

model overpredicts slip in order to match fold amplitude,

whereas the mechanical predicts slip accurately. Both

methods overpredict ramp length in order to match fold

width. This discrepancy could mean that the laboratory fold

experiences deformation not incorporated in either of the

models. For example, microcracking and associated dilation

observed in the experiment (Chester et al., 1991) may

produce more distributed deformation than that of the

models, resulting in wider folding.

Another difference between the models and the labora-

tory test is the application of uniform slip along ramp and

flats in both the mechanical and kinematic models. This

assumption facilitates the inference of fault geometry by

reducing the number of unknowns but does not accurately

simulate the laboratory deformation. Within the laboratory

and in natural folds, faulting and subsequent folding are

driven by far-field (tectonic) contraction, which does not

typically yield uniform slip. Variations in slip distribution

are expected to produce variations in limb dip, fold width

and other parameters. Furthermore, tectonic contraction

may act to tighten folds produced by slip along underlying

faults.

5. Discussion

Both the kinematic (fault parallel flow) and mechanical

(BEM) models have similar levels of accuracy for inferring

fault geometry from the shape of two-dimensional folds

(Table 2). Either model could be used to infer the ramp

geometry, but the mechanical model inferred slightly more

accurate fault slip and is needed to constrain fault depth.

Table 2

Analysis of modeled fold and fault measurements compared with

laboratory fold. *The mechanical fold width is taken at 5% of the

maximum amplitude because of the difficulty of distinguishing where the

laboratory fold fell to 1% maximum amplitude

Laboratory Mechanical Kinematic

Fold parameters

Amplitude (cm) 0.32 0.31 0.33

Width (cm)* 3.9 4.6 3.67

Forelimb (8) 17 25 16

Backlimb (8) 17 9 16

Fault parameters

Slip (cm) 0.71 0.7 1.18

Dip (8) 20 25 16

Ramp length (cm) 1.46 2.2 2.2

Depth 0.57 0.57 Insensitive

Effective depth 0.23 0.23 –
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However, in the unlikely scenario that the lateral position of

fault ramp is known and depth is unknown, the kinematic

method can constrain ramp depth. Both models over-

estimate the ramp length needed to simulate the laboratory

fold. For constraining fault length along fold axis, further

three-dimensional laboratory analysis is needed.

The one-to-one relationship of fault and fold parameters

for the kinematic method lent ease inferring fault geometry

from the Chester et al. (1991) laboratory fold. In contrast,

the interactive nature of the fault and fold parameters in the

mechanical model leads to non-uniqueness of fold shape,

i.e. more than one fault geometry may produce the same

fold shape. Because the fault shape of the Chester et al.

(1991) experiment was our first guess, the iterative

matching converged on a fault geometry similar to the

laboratory fault. A drastically different first-guess fault

could have resulted in iterative convergence on a very

different mechanical fault geometry that also matches the

laboratory fold shape.

To resolve this non-uniqueness, more than one

method can be used. When out-of-transport-plane

deformation is not a significant factor, the fault parallel

flow kinematic method would provide a good first

approximation. However the suitability of this method

decreases for plunging folds or in areas where multiple

faults interact. In areas of significant three-dimensional

deformation or in areas of multiple coeval faults, the

kinematic model should not be taken as a final

approximation. Furthermore, the limits of the kinematic

method to constrain fault depth provides the need for an

additional method in any circumstance.

A drawback to directly inferring fault geometry from the

shape of folded sedimentary layers with the mechanical

model is the lack of implicit interlayer slip. However, this

Fig. A1. Fold shape variation shown graphically (a–p). The kinematic models are shown in gray and the mechanical models in black. Fig. 4g shows a dark gray

trend that signifies the effect of fault dip on fold amplitude when height of the fold and depth of the syncline are both considered.
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can be remedied by implementing the effective thickness of

the strata into the model.

6. Conclusions

Detailed comparison of kinematic and mechanical

forward-modeled fold shapes highlight inherent differences

between the two methods. Kinematic fold parameters

generally respond to changes in one fault parameter while

the interplay between mechanical fold and fault parameters

renders non-unique inferences of fault geometry from fold

shape. Consequently, a multi-proxy approach, incorporating

field data and constraints from other types of models, is

suggested. Both methods simulate fault/fold relationships

relatively well and when used in conjunction, offer a

powerful tool for predicting fault geometry from fold shape.
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